Intelligent ${ }_{\text {Biology. }}$.

Supplementary Material

Global strategy amidst the globe's cultures

December 2019 (v2)

Nicholas David Wright

Full report downloadable from www.intelligentbiology.co.uk
These materials provide details on the searches and studies discussed in Part II of the report.

1 Supplementary Figures

1.1 Supplementary Figure S1

Figure S1. Risk studies: Three flowcharts showing inclusion and exclusion of studies from Web of Science, PsychINFO and EconLit searches respectively.

1.2 Supplementary Figure S2

Figure S2. Losses and gains studies: Three flowcharts showing inclusion and exclusion of studies from Web of Science, PsychINFO and EconLit searches respectively.

Excluded: N=90
Not publish in English: N=3 No losses and gains task: $\mathrm{N}=17$ Other aspects of DM : $\mathrm{N}=1$ Review/non-empirical: $\mathrm{N}=12$ Not included both East Asians and Western participants: $\mathrm{N}=56$ PhD dissertation: $\mathrm{N}=1$

1.3 Supplementary Figure S3

Figure S3. Intertemporal discounting studies: Three flowcharts showing inclusion and exclusion of studies from Web of Science, PsychINFO and EconLit searches respectively.

Excluded: $\mathrm{N}=18$
Not publish in English: N=1 No financial intertemporal discounting task: $\mathrm{N}=4$ Not included both East Asians and Western participants: $\mathrm{N}=10$ PhD dissertation: $\mathrm{N}=3$

1.4 Supplementary Figure S4

Figure S4. Regret studies: Three flowcharts showing inclusion and exclusion of studies from Web of Science, PsychINFO and EconLit searches respectively.

Excluded: $\mathrm{N}=51$
Not publish in English: N=4 Not in financial domain:
$\mathrm{N}=14$
Review/non-empirical: $\mathrm{N}=5$
Not included both East
Asians and Western participants: $\mathrm{N}=24$
PhD dissertation: $\mathrm{N}=4$

1.5 Supplementary Figure S5

Figure S5. Ultimatum game studies: Three flowcharts showing inclusion and exclusion of studies from Web of Science, PsychINFO and EconLit searches respectively.

1.6 Supplementary Figure S6

Figure S6. Dictator game studies: Three flowcharts showing inclusion and exclusion of studies from Web of Science, PsychINFO and EconLit searches respectively.

1.7 Supplementary Figure S7

Figure S7. Trust game studies: Three flowcharts showing inclusion and exclusion of studies from Web of Science, PsychINFO and EconLit searches respectively.

1.8 Supplementary Figure S8

Figure S8. Public goods game studies: Three flowcharts showing inclusion and exclusion of studies from Web of Science, PsychINFO and EconLit searches respectively.

1.9 Supplementary Figure S9

Figure S9. Prisoners' dilemma game studies: Three flowcharts showing inclusion and exclusion of studies from Web of Science, PsychINFO and EconLit searches respectively.

2 Supplementary Tables

2.1 Supplementary Table S1. Non-social aspects of decision-making (real monetary incentives).

Authors \& year	Participants	Design	Findings
RISK (no studies) ${ }^{1}$			
LOSSES AND GAINS			
Arkes et al. 2010	Study 3: PRC \& South Kor.: $\mathrm{n}=172$ USA: $\mathrm{n}=119$ No age \& gender info. Univ. students	Each subject made 4 choices. In each choice they were told a stock's starting price (\$20), its current price (\$26 in a gain; $\$ 14$ in a loss condition) and the future possible prices, and then chose a minimum selling price under a Becker, DeGroot, and Marschak (BDM) procedure. In the sale/repurchase conditions, after being told its current price they had to sell and then repurchase it for same price 2030 mins later, before the BDM procedure. Thus, within-subjects was manipulated: 2 (gain or loss stocks) x 2 (sale/repurchase intervention or no intervention).	The authors refer to "reference point (RP) adaptation", characterized as the updating of the RP following outcomes, e.g. shifting up after a gain and down after a loss. They collapsed across the 2 Asian groups. A 2 (US, Asia) x2 (gain, loss) x2 (intervention, no intervention) ANOVA with RP adaptation as the dependent variable showed: a main effect of outcome (update more from gains than losses); no main effect of culture; and a significant interaction of culture and the sale/repurchase intervention. The interaction was driven by Asians showing more adaptation than the US subjects without the sale/repurchase intervention.

INTERTEMPORAL DISCOUNTING (no studies)
REGRET (no studies)
2.2 Supplementary Table S2. Non-social aspects of decision-making (hypothetical monetary incentives).

 year	Participants	Design	Findings

[^0]| Arkes et al. 2010 | Study 2, Part 2:
 PRC: n=92; South Kor.: $\mathrm{n}=88$
 USA: $\mathrm{n}=118$
 No age \& gender info.
 Study 4:
 PRC: n=82; South Kor.:
 n=44; EA: $55 \% \mathrm{M}$
 USA: $\mathrm{n}=151,60 \% \mathrm{M}$
 No age info.
 Study 5:
 Asian as in Study 4.
 USA: $\mathrm{n}=169,56 \% \mathrm{M}$
 No age info.
 Univ. students | Study 2, Part 2: Risk preference estimated by 2 pairs of questions: Indicate the amount (X) that would make them indifferent between a sure option (win/lose X) and a risky option (with equally probable outcomes win [lose] $\$ 50 / \$ 100$ or zero). (Online setting)
 Study 4^{2} Repeated the questions in Study 2. (Online or classroom setting)
 Study 5: Half of subjects asked for selling price that would made them neither happy nor sad about a stock that went from $\$ 30$ to $\$ 35$ ($\$ 25$). Half of subjects in the "sale intervention" were also told that they sold the stock at $\$ 35$ (\$25) and with the money bought another stock they now decide about. (Online or classroom setting) | Study 2. In Part 2 only trend significance for more risk-taking for Asian (0.97) than US (0.84) subjects.
 Study 4. Risk preference did not differ between Asians and US.
 Study 5. Risk preference did not differ between Asians and US. |
| :---: | :---: | :---: | :---: |
| Wang \& Fischbeck 2008 | PRC: $\mathrm{n}=37,54 \% \mathrm{M}$, age range 21-32yrs USA: $\mathrm{n}=35,43 \% \mathrm{M}$, age range $18-40 \mathrm{yrs}$ Univ. students | Rated the willingness to pay (WTP) for 16 lotteries (each with 3 possible outcomes), which differed by EV, SD and probability of negative outcomes. 8 lotteries had a negative EV, and 8 had a positive EV, and for each of these two sets of lotteries subjects also ordered them according to perceived risk. | Distributions of estimated Cumulative Prospect Theory risk parameters were similar in the gain domain for the two national samples (US 0.79 , Chinese 0.80 ; statistical comparison not reported), but the US sample was more riskaverse with losses (US 1.64, Chinese 0.99 ; $\mathrm{p}<0.01$).
 Not report comparison of risk preference between cultures, collapsing across losses and gains. |
| Brumagim \& Wu 2005 | PRC: $\mathrm{n}=275,58 \% \mathrm{M}$, age mean 22.9 (s.d. 4.9) yrs. USA: $\mathrm{n}=140,51 \% \mathrm{M}$, age mean 21.0 (s.d. 0.9) yrs. Univ. students | Financial vignette where subjects chose between a safe or risky option. Between subjects design manipulated if the decision was in a gain or loss frame. | Chinese were more risk-taking than Americans in both the gain and loss frames. Chinese were risk-seeking with gain (66% of subjects) and loss (77%) frames. US subjects were risk-averse in gain (17%) and risk-seeking in loss (60%) frames. |
| Lau \& Ranyard 2005 | Hong Kong: $\mathrm{n}=60$, $100 \% \mathrm{M}$
 UK: $n=60,100 \% M$ Age range 20 yrs to 60 yrs No occupation info. None had a higher qualification. | Horse Race Task: Subjects could bet on the winners of 4 races, given the bookmaker's odds and the horses' previous form. Had $£ 100$ to bet on the 4 races, could only bet on "win", must bet on ≥ 1 race, could keep what wasn't spent. | Chinese were more risk-taking than British with one measure of risk-taking (sum of expected losses: Ch 69.7; UK 58.2) to measure risk-taking behaviour, but not with another measure (total amount bet as a proportion of max. possible). This was not accounted for solely by measured differences in probabilistic thinking. |

${ }^{2}$ Study 4 also noted the emotional impact of two scenarios, which we do not report.

	Half were gamblers, half non-gamblers.	Degree of probabilistic thinking was measured using a View of Uncertainty Questionnaire (VUQ).	
 Fischbeck 2004 (Marketing Bulletin) ${ }^{3}$	PRC: $\mathrm{n}=128$ USA: $\mathrm{n}=53$ No age \& gender info. PRC: no occupation info. USA: students	All subjects made 4 choices, each involving a certain amount versus a risky option with two possible outcomes. In 3 choices the two options only involved gains, in one choice the options only involved losses.	In all 3 choices with gains more US subjects were risk averse than Chinese and more Chinese were risk-neutral than US subjects, while in only one choice were more Chinese riskseeking than US subjects. In the one choice with losses there no significant national difference.
$\begin{aligned} & \text { Fong \& Wyer } \\ & 2003 \end{aligned}$	Hong Kong: $\mathrm{n}=158$ USA: $\mathrm{n}=108$, No age or gender info. Univ. students (HK, marketing; USA: psychology)	Written vignette comparing investing in a riskier company or safer bank. Asked to estimate: (a) likelihood of investing; and (b) estimated riskiness of investment. Two other factors: informed about others' decisions (to take the risk vs. not to do so), and the social distance with the others who made decision (friends vs. people in general).	No cultural difference in the estimated likelihood of taking the riskier option, but Americans estimated the risk to be greater than the Chinese.
Hsee \& Weber 1999	Studyl: PRC: $\mathrm{n}=110$ USA: $\mathrm{n}=99$ Study2: PRC: $\mathrm{n}=65$ USA: $\mathrm{n}=66$ No age \& gender info. Univ. students	Study 1: Each subject evaluated 4 lists of choices. Each list contained one type of choice from the manipulation of 2 domain (gains and losses) x 2 outcome size (large or small). Each list contained 7 choices between a sure option (the same in all 7 choices) and a risky option (two equally probable potential outcomes: 0 or one of 7 amounts that differed between 7 trials). Study 2: Each subject made choices about 3 scenarios. Each scenario was an investment choice between two options: either a 2% return for certain, or a risky option (two possible equally probable outcomes of either a 0% return or a positive return $[2 \%, 4 \%$ or 6% in the 3 different scenarios]).	Study 1: Chinese were more risk-taking (4.23) than the US (3.41) overall (results scaled from $1=$ most risk-averse to $8=$ most risk-seeking, so $4=$ risk neutral). Study 2: Chinese more risk-taking (2.63) than Americans (2.26)(results are scaled from $1=$ most risk-averse to $4=$ most risk-seeking). \#Neither study formally reported if Chinese were absolutely risk-seeking or US absolutely risk-averse.

${ }^{3}$ In this review, we report data from their Experiment 2. Experiment 1 was a scenario about the purchase of health insurance, and we do not include these data for direct comparison as it is unclear how they may have been affected by attitudes to health and health provision in addition to risk. Wang and Fischbeck 2004 (J Risk Uncert) also examined attitudes to risk in health provision using survey data from one large US and one large Chinese survey.

Weber \& Hsee 1998	PRC: $\mathrm{n}=85$ USA: $\mathrm{n}=86$ Germany: $\mathrm{n}=31$ Poland: $\mathrm{n}=81$ Mean ages of groups were 21-23yrs. No gender info. USA: various majors; Germany: business; Poland: education or business)	Subjects evaluated 12 risky investment options (each option had 3 potential outcomes, of which ≥ 1 was a gain and ≥ 1 a loss; EV always positive). Saw all options twice, giving 24 trials in total. For each option subjects evaluated: (a) "What is the maximum amount you would be willing to pay" (WTP; they were told they had $\$ 20 \mathrm{k}$ to invest); and (b) "How risky do you think this investment is" (scale from $0=$ not at all, to $100=$ extremely risky).	WTP: Chinese more risk-taking (mean WTP \$487) than Poles (\$352), who were more risk-taking than Germans (\$315) and US (\$320). All four were risk-averse compared to risk-neutral (actual mean EV of options \$682). Risk perception: Chinese perceived less risk (42) than Poles (47), Germans (47) and US (52).
Sinha 1996	Singapore (ethnic Chinese): $\mathrm{n}=69$, age mean 21.1 (s.d. 2.17) yrs. USA: $\mathrm{n}=71$, age mean 20.5 (s.d. 4.12) yrs. No gender info. Univ. students (Singapore: econ and statistics; US: econ).	Each subject took 4 scenarios, one each from manipulating 2 domain (gain, loss) x 2 outcome size (large, small). Each was a vignette about insurance, involving a sure option versus a risky option that was a 50/50 choice determined by staircase procedure.	No cultural differences found for domain or outcome size.

[^1]| Guo \& Spina 2016 | Study 1:
 Macao: $\mathrm{n}=99,31 \% \mathrm{M}$, age mean 18.9 (s.d. 1.24) yrs., UK: $\mathrm{n}=84,30 \% \mathrm{M}$, age mean 21.3 (s.d. 6.28) yrs. Univ. students Study 2:
 Macao: $\mathrm{n}=151,40 \% \mathrm{M}$, age mean 19.0 (s.d. 1.31) yrs.
 UK: $n=124,38 \% \mathrm{M}$, age mean 21.3 (s.d. 4.67) yrs. Univ. students | Study 1: gift exchange task original gift set: a free movie/dinner + a calendar.
 1) Keep the gift set; 2) give up the calendar for an additional movie ticket/dinner 3) give up both for two movie tickets/ dinner.
 Study 2: Buy computer task: choice between two computers (differences either in disadvantages/losses or in advantages/gains.) in low- or a high-reference condition. | Chinese participants were more loss-averse than their British counterparts.
 Chinese participants more greatly preferred the laptop with lower price tag than British participants, interpreted as being more loss-averse. |
| :---: | :---: | :---: | :---: |
| Arkes et al. 2010 | Study 1 \& part 1 of study 2:
 PRC: n=89; South Kor.:
 n= 81; EA: $70 \% \mathrm{M}$
 USA: $\mathrm{n}=81,66 \% \mathrm{M}$
 No age info.
 (Classroom setting)
 Study 4:
 PRC: n=82; South Kor.:
 $\mathrm{n}=44$; EA: $55 \% \mathrm{M}$
 USA: $\mathrm{n}=151,60 \% \mathrm{M}$
 No age info.
 Study 5
 Asian as in Study 4.
 USA: $\mathrm{n}=169,56 \% \mathrm{M}$
 No age info.
 Univ. students | Study 1: Subjects were asked 2 questions (the second shown in brackets): to indicate the stock price that would make them just as happy (sad) with the stock's price this month as they were when they learned the stock had risen from $\$ 30$ to $\$ 36$ (fallen from $\$ 30$ to $\$ 24$) last month. Study 2 Part 1: Loss aversion estimated by 3 questions, in each indicate the amount (X) that would make them indifferent between a zero option and a risky option (with 2 equally probable outcomes X or lose $\$ 25 / \$ 50 / \$ 100$) Study 4^{5} Repeated the questions in Study 2. (Online or classroom setting)
 Study 5: Half of subjects asked for selling price that would made them neither happy nor sad about a stock that went from $\$ 30$ to $\$ 35(\$ 25)$. Half of subjects in the "sale intervention" were also told that they sold the stock at $\$ 35$ (\$25) and with the money bought another stock they now decide about. | Study 1. Combined Chinese and Koreans into an East Asian group. In a 2 domain (gain/loss) x 2 culture (Asian, US) ANOVA there was a main effect of domain (reference point adapts more to gains than losses) and culture (greater adaptation for Asians than US), with the interaction of only trend significance.
 Study 2. In Part 1 only trend significance for US subjects being more loss averse (1.86) than Asians (1.66).
 Study 4. US subjects more loss averse (2.88) than Asians (1.88; significant).
 Study 5. A 2 (culture: Asia, US) x 2 (outcome: gain, loss) x 2 (sale intervention: yes, no) ANOVA showed a significant outcome effect; a significant sale x culture interaction, but no significant culture main effect. US subjects were more loss averse (2.83) than Asians (1.88; significant). |
| Wang \& Fischbeck 2008 | Detailed in risk section above.
 Findings: Similar in the gain domain, but the US sample was more risk-averse on losses. | | |

[^2]| Brumagim \& Wu 2005 | Detailed in risk section above.
 Findings: Chinese were more risk-taking than Americans in both the gain and loss frames. Chinese were risk-seeking with gain (66% of subjects) and loss (77%) frames. US subjects were risk-averse in gain (17%) and risk-seeking in loss (60%) frames. | | |
| :---: | :---: | :---: | :---: |
| Wang and Fischbeck 2004
 (Marketing
 Bulletin) ${ }^{6}$ | Detailed in risk section above.
 Findings: With gains more US subjects were risk averse than Chinese and more Chinese were risk-neutral than US subjects. With losses there no significant national difference. | | |
| Sinha, 1996 | Detailed in risk section above.
 Findings: No cultural differences found for domain. | | |
| INTERTEMPORAL DISCOUNTING ${ }^{7}$ | | | |
| $\begin{aligned} & \text { Gong et al. } \\ & 2014 \end{aligned}$ | Chinese in PRC: $\mathrm{n}=77$, 67\%M
 Chinese aboard participants ${ }^{8}$: $\mathrm{n}=110$, $33 \% \mathrm{M}$
 USA: $\mathrm{n}=107,47 \% \mathrm{M}$.
 No age info.
 National population | Web-based survey 2 (gain vs. loss: between) x 4 (Categories: environmental existence value vs. environmental use value vs. lottery money vs. self-earned/inflicted money: within) design. | Significant interaction was found between nationality and losses/gains conditions.
 Chinese (in China or abroad) discounted more than US samples in the gain domain, but had similar discount rates in the loss domain. |
| $\begin{aligned} & \hline \text { Kim et al. } \\ & 2012 \end{aligned}$ | South Kor.: n=19,
 $47.3 \% \mathrm{M}$, age mean 21.2
 (s.d. 1.72) yrs.
 USA: $\mathrm{n}=14,64 \% \mathrm{M}$, age mean 22.0 (s.d. 2.65) yrs. Univ. students | An fMRI study
 Participants chose between smaller, sooner outcomes and later, larger outcomes. | Participants from USA discounted more than Korean participants. |

${ }^{6}$ In this study, we report data from Experiment 2. Experiment 1 was a scenario about the purchase of health insurance, and we do not include these data for direct comparis as it is unclear how they may have been affected by attitudes to health and health provision in addition to risk. Wang and Fischbeck 2004 (J Risk Uncert) also examined attitudes to risk in health provision using survey data from one large US and one large Chinese survey.
${ }^{7}$ (Du, Green, \& Myerson, 2002) was not included as they tested US, Japanese and Chinese samples, and it is unclear if they directly compared US samples to East Asian samples.
${ }^{8}$ (Gong et al., 2014) did not report the countries where Chinese abroad were.

Tan \& Johnson 1996	Chinese 9 : $\mathrm{n}=21$ Canada: $\mathrm{n}=20$ No age \& gender info. Univ. students	Task 1: 3 (amount received immediately: \$91, \$868, $\$ 8281) \times 3$ (time to wait: 6 months, 1 year, 5 years) x 2 (high risk, low risk). Participants should state the amount of money that makes them indifferent between receiving the money immediately and receiving the money later. Task 2: Choose between an immediate option from Task 1 and a delayed option from Task 1.	Task 1: No main effect or interactions of culture and time preference. Task 2: Interaction of time, risk and culture, in which the Chinese were more willing than Canadians to wait in the low risk situation and less willing to wait in the high risk situation.
REGRETS (no studies)			

2.3 Supplementary Table S3. Social aspects of decision-making (real monetary incentives).

ULTIMATUM GAME					
Authors \& year	Participants	Design	Proposals (\%, mean)	Responder rejection rate (\%, mean across all offers)	Findings
Horak 2015	Proposers: South Kor.: $\mathrm{n}=155$, age range 19-24yrs Germany: n=143, age range 19- 42 yrs No gender info. Korean: Univ. students German: Mixed sample	UG One-shot 2 (Korean, German) x 2 (Anonymous, non- Anonymous) Between subjects	South Kor. UG Anon.=38 UG non-Anon. $=44$ Germany UG Anon. $=49$ UG non-Anon=48	Data not reported.	Proposers: Koreans offer less than Germans in anonymous UG, but no cultural difference in non-anonymous UG (where personal details were given).

[^3]| Chuah et
 al. 2007 | Malaysian
 Chinese ${ }^{10}$: $\mathrm{n}=186$,
 $53 \% \mathrm{M}$, age mean
 23.4yrs
 UK: n=180,
 $65 \% \mathrm{M}$, age mean
 23.4yrs
 Workers and
 Univ. students | UG
 One-shot
 2 Proposer nat. (Mal. Ch., UK) x 2 Responder nat. (Mal. Ch., UK) x 2 Location (Malay., UK)
 Between subjects | Mal. Ch.-all=46
 UK-all=44
 In Mal. Ch.:
 Mal. Ch.- Mal. Ch.=48
 Mal. Ch.-UK=43
 UK- Mal. Ch. $=45$
 In UK:
 Mal. Ch.-UK=46
 UK- Mal. Ch. $=44$
 UK-UK=44 | Mal. Ch.-all=12
 UK-all=12
 In Mal. Ch.:
 Mal. Ch.- Mal. Ch. $=7$
 Mal. Ch.-UK=15
 UK- Mal. Ch. $=16$
 In UK:
 Mal. Ch.-UK=4
 UK- Mal. Ch. $=19$
 UK-UK=15 | Proposers:
 Malaysian Chinese proposers made sig. higher offer than UK proposers.
 Malaysian Chinese proposers made higher offers to ingroup members in Malaysia than UK proposers offer to Malaysian Chinese responders in UK. Malaysian Chinese proposers made higher offers to ingroup members in Malaysia than UK proposers offer to UK respondents in the UK.
 Responders:
 No effect of nationality found. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Okada \& Ried ${ }^{11}$ 1999 | Japan: $\mathrm{n}=72$
 Austria: $\mathrm{n}=66$
 No gender and age info.
 Univ. students | UG
 3-person UG: 1 proposers vs. 2 responders 8 rounds with different partners in each treatment 2 (Austria, Japanese) x 2 (2-, 3- person UG) x2 (high-, lowtreatment) Mixed subject | In high treatment:
 Austria:
 2-person=61
 3-person=45
 Japan:
 2-person=62
 3 -person=44
 In low treatment:
 3-person:
 Austria=39
 Japan=41 | In high treatment:
 Austria:
 2-person=16
 3-person=28
 Japan:
 2-person=14
 3 -person=23
 In low treatment:
 3-person:
 Austria=18
 Japan=23 | Neither in the High- nor in the Low-Value treatment coalition decisions differ between Austria and Japan. Proposers:
 No effect of nationality found.
 Responders:
 Neither in 2- nor in 3-person coalitions is responder behaviour difference between Austria and Japan. |
| Roth et al. | Japan: n=58
 USA: $\mathrm{n}=74$
 Israel: $\mathrm{n}=60$
 Yugoslavia: $\mathrm{n}=60$
 No age \& gender info.
 Univ. students (Japan:
 economics; USA: economics and | UG
 10 rounds with different partner.
 For USA: 2 treatments (high stake vs. low stake)
 Market task | USA-high-round1=52
 USA-high-round $10=49$
 USA-low-round $1=47$
 USA-low-round10=46
 Japan-round $1=42$
 Japan-round $10=43$ | $\begin{aligned} & \text { USA=28 } \\ & \text { Yugoslavia=29 } \\ & \text { Japan=22 } \\ & \text { Israel=28 } \end{aligned}$ | Proposers:
 Participants from USA made higher offers than Japanese.
 Responders:
 Japanese appear to reject offers less than the US sample, but this is not tested statistically. |

[^4]	1991^{12}	MBA; Israel: economics, business and psychology; Yugoslavia: economics)			

${ }^{12}$ (Costa-Gomes \& Zauner, 2001) re-analyze the data from Roth et al., (1991)
${ }^{13}$ A second experiment was conducted that did not directly compare cultures.

	South Kor.: n=65, $42 \% \mathrm{M}$, age mean 23.0yrs USA: $\mathrm{n}=101$, $39 \% \mathrm{M}$, age mean 19.4 yrs Univ. students	2 cultures (South Kor., USA) x 2 responders expression (excited, calm) x 2 responders race (White, Asian) x 2 responders sex (Male, Female) x 2 Amount of Endowment (\$14, \$6) Within subjects Affect Valuation Index Post-experimental survey			
TRUST GAME					
Authors \& year	Participants	Design	Investor behaviour Proportion sent (\%, Mean)	Trustee behaviour Proportion returned (\%, Mean)	Findings
Akai \& Netzer 2012	Japan: $\mathrm{n}=216$ Austria: $\mathrm{n}=216$ No gender and age info. Univ. students	TG Amount sent x3 3-members teams (Team A, Team B) x 2 (intra/international task) x 2 roles (trustor, trutee) Mixed subjects Post-experimental survey	Aust.-Aust. $=56$ Japan-Japan=62 Aust.-Japan=68 Japan-Aust. $=65$	Data reported only in figure.	Investor: No effect of nationality found. Trustee: No differences between Japanese and Austrian in intranational reciprocity. International reciprocity in Japan is higher than that in Austria.
$\begin{aligned} & \hline \text { Netzer \& } \\ & \text { Sutter }{ }^{14} \\ & 2009 \end{aligned}$	Japan: $\mathrm{n}=74,86 \% \mathrm{M}$, age mean 22.7 (s.d. $1.55)$ yrs. Austria: n=76, $63 \% \mathrm{M}$, age mean 23.1 (s.d. 2.25) yrs. Univ. students	TG Amount sent x3 2 trustor nat. (Japan, Aust.) $\times 2$ trustee nat. (Japan, Aust.) Between subjects Post-experimental survey	Aust.-Aust. $=44$ Japan-Japan=45 Aust.-Japan=62 Japan-Aust. $=33$	Data reported only in figure.	Investor: Austrians sent higher amount to outgroup members than the amount Japanese sent to outgroup members. When counterparts were from same nationality, no effect of nationality found. Trustee: Japanese show trend to return less than Austrian participants.
Kuwabara et al	Japan: $\mathrm{n}=42 ; 64 \% \mathrm{M}$ USA: $\mathrm{n}=44 ; 50 \% \mathrm{M}$	TG-web based	$\begin{aligned} & \text { Flags-on } \\ & \text { Japan-USA=29 } \end{aligned}$	$\begin{aligned} & \text { Flags-on } \\ & \text { Japan-USA=88 } \\ & \hline \end{aligned}$	Investor: 1. No effect of nationality on investment size.

${ }^{14}$ Working paper.

2007	No age info. Univ. students	On each trial could invest between 0-0.50. Trustee had to return 0 or 2x of the on a trial. Trustees could earn profits only by betraying trust. Amount sent x2 Repeated "Entrustment Game" 2 trustor nat. (Japan, USA) $\times 2$ trustee nat. (Japan, USA) x2 (Flags- on, Flags-off) Played both Investor and Trustee.	Japan-Japan=19 USA-Japan=31 USA-USA=23	Flags-off Japan-USA=29 Japan-Japan=20 USA-Japan=27 USA-USA=20	Japan-Japan=90 USA-Japan=87 USA-USA=90
(

$\begin{aligned} & \text { Walkowitz } \\ & \text { et al }{ }^{15} \\ & 2005 \end{aligned}$	PRC: $\mathrm{n}=30$ Germany: $\mathrm{n}=30$ Argentine: $\mathrm{n}=30$ No gender \& age info. Univ. students	TG Amount sent x2 Playing both roles 3 rounds with different partner in each role 3 trustor nat. (PRC, German, Argentinean) $\times 3$ trustee nat. (PRC, German, Argentinean) Intra- and internationality compare. Within subjects	Germany=54 Germany-Germany=58 Germany-PRC=53 PRC=54 PRC-PRC=58 PRC-Germany=57	Germany=36 Germany-Germany=34 Germany-PRC=38 PRC=49 PRC-PRC=51 PRC-Germany $=52$	Investor: No effect of nationality found. Trustee: Germans return less than the Argentinians or Chinese.
Buchan et al. 2006^{16}	PRC: $\mathrm{n}=48$, $71 \% \mathrm{M}^{17}$ South Kor.: $\mathrm{n}=50$, $96 \% \mathrm{M}$ Japan: $\mathrm{n}=44,86 \% \mathrm{M}$ USA: $\mathrm{n}=44,36 \% \mathrm{M}$ No age info. Univ. students (economics or business)	TG Amount sent x3 One-shot 4 nat. (PRC, S. Korean, Japanese, USA) $\times 2$ social distance (ingroup, outgroup) Between subjects Ingroup engaged in group discussion.	PRC=71 South Kor. $=67$ Japan=69 USA=65 Estimated: PRC-ingroup $=66$ PRC-outgroup $=76$ Korea-ingroup=71 Korea-outgroup=63 Japan-ingroup $=67$ Japan-outgroup=71 USA-ingroup=77 USA-outgroup=53	PRC=34 South Kor. $=29$ Japan=32 USA=28 Estimated: PRC-ingroup $=29$ PRC-outgroup $=40$ Korea-ingroup $=30$ Korea-outgroup $=28$ Japan-ingroup $=33$ Japan-outgroup=31 USA-ingroup $=32$ USA-outgroup=24	Investor: Trend for Chinese to invest more than the US sample participants. Trustee: Chinese returned more than US participants.
Buchan et al. 2002	PRC: $\mathrm{n}=128$ South Kor.: n=140 Japan: n=140 USA: $\mathrm{n}=140$ No age \& gender info.	TG Amount sent x3 One-shot 4 nat. (PRC, South Kor., Japanese, USA) x 2 role (trustor, trustee)	$\begin{aligned} & \text { PRC=52 } \\ & \text { South Kor.=44 } \\ & \text { Japan=44 } \\ & \text { USA=60 } \end{aligned}$	$\begin{aligned} & \text { PRC=65 } \\ & \text { South Kor. }=74 \\ & \text { Japan=34 } \\ & \text { USA=32 } \end{aligned}$	Investor: The amounts sent by USA and Chinese samples are higher than amounts sent by Korean and Japanese participants. Trustee:

[^5]| | Univ. students: (economics or business) | $\times 3$ conditions (direct, group, stranger) Between subjects INDCOL scale (collectivist and individualist tendencies) | | | Chinese and Korean participants return more than Japanese and USA samples. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PUBLIC GOODS GAME ${ }^{18}$ | | | | | |
| Authors \& year | Participants | Design | | Findings | |
| Vu 2016 | PRC: $\mathrm{n}=86$
 Germany: n=88
 No age \& gender info.
 Univ. students | Group size: 2
 3 levels of social distance: invisible vs. name vs. visible conditions.
 One-shot
 The common fund would be increased by 1.5 after participants made decisions and be divided equally between both players no matter how much individual invests in it.
 Subjects were asked to guess the amount their counterparts invested. | | In the invisible condition (i.e. complete anonymity), Chinese contributed less than Germans.
 No cultural difference in the other two conditions. | |
| Cason et
 al. 2002 | Japan: n=60
 USA: $\mathrm{n}=40$
 No age \& gender info. Univ. students | Public goods provision game with 2 decisions per round: announce whether to participate, and then how much to contribute. Group size: 2 19 rounds (4 practice+15 real play) with different subjects. Post-experimental questionnaire | | Japanese participate more. Japanese contribute less when only one of pair participates, but no cultural difference when both participate. | |
| $\begin{aligned} & \text { Sell et al. } \\ & 2002 \end{aligned}$ | PRC: $\mathrm{n}=20$
 USA: $\mathrm{n}=20$
 No age \& gender info.
 Univ. students | PGG
 Group size: 8
 Public fund is equally divided to all members of the group no matter how much individual invests in it
 Resource goods game (Refrain From Taking)
 Between subjects | | Chinese contribute less than USA participants. | |
| PRISONERS' DILEMMA GAME ${ }^{19}$ | | | | | |

${ }^{18}$ We did not include (Brick \& Visser, 2015) as the participants were acting as a representative for a country/region.
${ }^{19}$ (Goerg \& Walkowitz, 2010) was not included. The most Western countries studied were Finland and Israel. It is also unclear which direct comparisons of Finland and Israel to China were significant beyond a trend level.

Authors \& year	Participants	Design	Findings
Kuwabara et al. 2014	Japan: $\mathrm{n}=112,50 \% \mathrm{M}$, age mean 20.4 (s.d. 2.60) yrs USA: $\mathrm{n}=93,44 \% \mathrm{M}$, age mean 22.3 (s.d. 4.42) yrs. Univ. students	30 rounds PDG with an anonymous partner to cooperate in all rounds except 1 and 2 (early trust violations) or 10 and 11 (late trust violations). The exchange rounds actually ended after 22 rounds. Six-item generalized trust scale Post-experimental questionnaire on solidarity.	2×2 ANOVA no main effect of culture found, but an interaction between timing and culture was found. Early trust violations resulted in lower cooperation in the final five rounds than late trust violations in the US. However, Japanese cooperated more in the final five rounds after early trust violations than late trust violations.
Yamagishi et al. 2008	Japan: $\mathrm{n}=48,63 \% \mathrm{M}$ New Zealand: $\mathrm{n}=55$, $42 \% \mathrm{M}$ No age info. Univ. students	2 (mutual- vs. unilateral-knowledge) x 2 (out- vs. in-group) In-/out-group: participants were assigned into the Klee group and the Kandinsky group Within subjects 4 times; Amount sent would be doubled	Japanese were less cooperative than New Zealanders. Knowledge x group interaction was significant. Participant's nationality had only the main effect in the above ANOVA; it did not interact with any of the other variables including the knowledge x group interaction.
Cook et al. 2005	Japan: $\mathrm{n}=192,60 \% \mathrm{M}$ USA: $\mathrm{n}=106,53 \% \mathrm{M}$ No age info. Univ. students	Standard PDG vs. PDG with risk (PD/R). First 25 trials: new partner Remaining trails: new or same partners depending on the conditions. The experiment included three conditions: PD with a fixed partner, PD / R with a fixed partner, and PD / R with a random partner.	Phase 1.25 trials analysed, all conditions random partner, PD or PD/R. Japanese were more cooperative than USA. Phase 2. 35 trials analysed, PD fixed partner, PD/R fixed partner, $\mathrm{PD} \backslash \mathrm{R}$ random partner: (a) Cooperation rate: no cultural effect found (b) Entrustment rate: Americans entrusted more than Japan. (c) Cooperation rate: Fixed partner PD - No cultural effect found.
Yamagishi et al. 2005	Japan: n=57 Australia: $n=49$ No age \& gender info. Univ. students	5 conditions: Condition $1 \& 2$: in-/out-group conditions Condition 3: nationalities unknown Condition 4: participants played with an in-group member who did not know the participant's nationality. Condition 5: participants played with an out-group member who did not know the participant's nationality. Participants played all five conditions. Post-experimental questionnaire	Australians were more cooperative overall than Japanese.

Hayashi et al. 1999	$\mathrm{Japan}^{20}: \mathrm{n}=148,74 \% \mathrm{M}$ USA: $\mathrm{n}=167,51 \% \mathrm{M}$ No age info. Univ. students

Participants were assigned to one of five conditions: selffirst/knowledge, other-first/knowledge, self-first/no-knowledge, other-first/no-knowledge, simultaneous.
Self/other-first means the order of making decision; no-
/knowledge means whether participants know the decision made by their partner.
Post-experimental questionnaire

When participants were the second mover (other-first/knowledge condition), no cultural difference.
In other-first/no-knowledge condition, cooperation rate of USA was higher than Japan.
When participants were the first mover (self-first/knowledge condition), the cooperation rate in USA was lower than in Japan.
2.4 Supplementary Table S4. Social aspects of decision-making (hypothetical monetary incentives).

ULTIMATUM GAME					
Authors \& year	Participants	Design	Proposals (\%, mean)	Responder rejection rate (\%, mean across all offers)	Findings
Valenzuela et al. 2005^{21}	South Kor.: $\mathrm{n}=164,48 \% \mathrm{M}$, age mean 2.01yrs USA: $\mathrm{n}=133$, $44 \% \mathrm{M}$, age mean 21.0yrs Univ. students	UG 2 (culture: South Kor., USA) x 2 (offer size: $\$ 12.50$ and $\$ 7.50$) x 3 (conditions: control, situational constraints salient, group decisionmaking context) All participants played as responders and they didn't know the stake size. Between-subjects design In the salient situational constraints condition, participants were asked to think themselves play as proposer, and the stake were $\$ 10$, $\$ 20$, and $\$ 40$.	Only tested proposers' behaviour.	Control: Lower offer: South Kor. $=66.7$ USA=60.9 Higher offer: South Kor. $=34.3$ USA=36.7 Situational constraints salient: Lower offer: South Kor. $=44.8$ USA=59.1 Higher offer: South Kor. $=26.7$ USA=24	Proposers: 1. In the control condition: no cultural difference in either lower or higher offer size conditions. 2. In the Situational constraints salient condition: When the offer size was low (7.5), USA rejected more. When the offer size was high (12.5), no cultural differences.

[^6]					

[^7]
2.5 Supplementary Table S5 Cross-cultural psychology: Contention 1, East

Asians Show More Context Dependence

Authors, year	Participants	Gender \& mean age	Subjects occupation
Adult behavioural studies			
Framed Line test			
Zhang et al. 2014	Hong Kong: younger adults $\mathrm{n}=42$ Older adults $\mathrm{n}=52$ USA: younger adults $\mathrm{n}=43$ Older adults $\mathrm{n}=47$	Hong Kong: younger adults $36 \% \mathrm{M}$, 20.0yrs Older adults $31 \% \mathrm{M}$, 68.6yrs USA: younger adults $26 \% \mathrm{M}, 20.4 \mathrm{yrs}$ Older adults $32 \% \mathrm{M}$, 72.6yrs	Younger adults: University students Older adults: national population
Miyamoto \& Wilken, 2010	Study 1: Japan: $\mathrm{n}=76$ USA: $\mathrm{n}=75$ Study 2: Japan: $\mathrm{n}=54$, USA: $\mathrm{n}=46$	Study 1: Japan: 53% M USA: $40 \% \mathrm{M}$ No age info. Study 2: Japan: $59 \% \mathrm{M}$ USA: 52\%M No age info.	University students
Kitayama et al. 2009	Japan: $\mathrm{n}=122$ USA: $n=94$ UK: $\mathrm{n}=95$ Germany: $\mathrm{n}=125$	Japan: $55 \% \mathrm{M}, 20.9 \mathrm{yrs}$ USA: $34 \% \mathrm{M}, 18.7 \mathrm{yrs}$ UK: $13 \% \mathrm{M}, 20.5 \mathrm{yrs}$ Germany: 31\%M, 26.8yrs	University students
Hedden et al. 2008	EA in USA: $\mathrm{n}=10$ European Americans in USA: $\mathrm{n}=10$	All participants: $45 \% \mathrm{M}$, 18-26yrs.	No info.
Zhou et al., 2008	Study 1: PRC: $\mathrm{n}=40$ Study 2: EA Americans in USA: $\mathrm{n}=29$ European Americans in USA: $\mathrm{n}=25$ Study 3: European Americans in USA: $\mathrm{n}=24$ Study 4: USA: $\mathrm{n}=10$	Study 1: PRC: $50 \% \mathrm{M}$ No age info. Study 2, study 3 \& study 4 No info.	Study 1, study 2 \& study 3: university students Study 4: investment bankers
Kitayama et al. 2003	Study 1: Japan: $\mathrm{n}=20$, USA: $\mathrm{n}=20$	Study 1: Japan: $40 \% \mathrm{M}$ USA: $45 \% \mathrm{M}$	University students

	Study 2: Japanese in Japan: $\mathrm{n}=32$ Americans in Japan: $\mathrm{n}=18$ Japanese in USA: $62 \% \mathrm{M}$ Americans in USA: $53 \% \mathrm{M}$	No age info. Study 2: Japanese in Japan: 63\%M Americans in Japan: $44 \% \mathrm{M}$ Japanese in USA: $62 \% \mathrm{M}$ Americans in USA: $53 \% \mathrm{M}$ No age info.	
Rod and Frame test			
$\begin{aligned} & \text { Ji et al. } \\ & 2000 \end{aligned}$	Study 2: EA in USA: $\mathrm{n}=41$ European Americans in USA: $\mathrm{n}=56$	Study 2: EA in USA: 44\%M European Americans in USA: $48 \% \mathrm{M}$ No age info.	University students
Ebbinghaus illusion			
Caparos et al. 2012	Study 1: Japan: $\mathrm{n}=63,51 \% \mathrm{M}$, age mean 20yrs. UK: $n=62,44 \% M$, age mean 24 yrs .	Study 1: Japan: 51\%M, 20.0yrs. UK: $44 \% \mathrm{M}, 24.0 \mathrm{yrs}$.	University students
Doherty et al. 2008	Study 1: Japan: $\mathrm{n}=63$, UK: $\mathrm{n}=32$ Study 2: Japan: $\mathrm{n}=25$ UK: $\mathrm{n}=20$	Study 1: Japan: 54\%M UK: $50 \% \mathrm{M}$ No age info. Study 2: Japan: $0 \% \mathrm{M}$ UK: $0 \% \mathrm{M}$ No age info.	Study 1: Japan: female university students \& male engineers UK: University staffs \& students Study 2: University students
Global-local task			
Oishi et al. 2014	Study 1: Japan: $\mathrm{n}=119$ USA: $\mathrm{n}=196$ Study 2: Japan: $\mathrm{n}=952$ USA: $\mathrm{n}=891$	Study 1: Japan: $25 \% \mathrm{M}, 20.0 \mathrm{yrs}$ USA: $46 \% \mathrm{M}, 19.04 \mathrm{yrs}$. Study 2: Japan: $51 \% \mathrm{M}, 45.17 \mathrm{yrs}$ USA: $49 \% \mathrm{M}, 43.17 \mathrm{yrs}$	Study 1: University students Study 2: National population
Change blindness			
Masuda \& Nisbett, 2006	Study 1: EA in USA: $\mathrm{n}=36$, Americans in USA: $\mathrm{n}=30$ Study 2: Japan: $\mathrm{n}=18$ USA: $\mathrm{n}=19$ Study 3: Japan: $\mathrm{n}=32$ USA: $\mathrm{n}=28$	Study 1: EA in USA: $53 \% \mathrm{M}$ Americans in USA: $50 \% \mathrm{M}$ No age info. Study 2: Japan: $56 \% \mathrm{M}, 19.4 \mathrm{yrs}$. USA: $53 \% \mathrm{M}$, 19.3yrs. Study 3: Japan: 47\%M, 18.8yrs. USA: $46 \% \mathrm{M}$, 19.9yrs.	University students

Miyamoto et al. 2006	Study 2: Japan: $\mathrm{n}=32,72 \% \mathrm{M}$ USA: $\mathrm{n}=30,33 \% \mathrm{M}$ No age info.	Study 2: Japan: $72 \% \mathrm{M}$ USA: $33 \% \mathrm{M}$ No age info.	University students
Other tasks			
Zhang et al. 2014	Hong Kong: younger adults $\mathrm{n}=42$ Older adults n=52 USA: younger adults $\mathrm{n}=43$ Older adults $\mathrm{n}=47$	Hong Kong: younger adults $36 \% \mathrm{M}$, 20.0yrs Older adults $31 \% \mathrm{M}$, 68.6yrs USA: younger adults 26\%M, 20.4yrs Older adults $32 \% \mathrm{M}$, 72.6yrs	Younger adults: University students Older adults: national population
Boduroglu et al. 2009	Study 1: EA in USA: $\mathrm{n}=28$ Americans in USA: $\mathrm{n}=28$ Study 2: EA in USA: $\mathrm{n}=17$ Americans in USA: $\mathrm{n}=17$	Study 1: Americans in USA: 18-25 yrs. No gender info. Study 2: No info.	University students
 Lee, 2008	Chinese: $\mathrm{n}=9$ Koreans: $\mathrm{n}=9$ Americans: $\mathrm{n}=9$, No location info.	Chinese: $67 \% \mathrm{M}$ Koreans: 67\%M Americans: $67 \% \mathrm{M}$ All: 24-35yrs	No info.
$\begin{aligned} & \text { Ishii et al. } \\ & 2003 \end{aligned}$	$\begin{aligned} & \text { Study 1: } \\ & \text { Japan: } \mathrm{n}=119 \\ & \text { USA: } \mathrm{n}=95 \end{aligned}$	Study 1: Japan: 54\%M USA: 51\%M No age info.	University students
Kitayama \& Ishii, 2002	Study 1: Japan: $\mathrm{n}=50$ Study 2: Japan: $\mathrm{n}=60$ Study 3: USA: $\mathrm{n}=38$	Study 1: Japan: 46% M No age info. Study 2: Japan: $0 \% \mathrm{M}$ No age info. Study 3: USA: $37 \% \mathrm{M}$ No age info.	University students
Memory			
Millar et al. 2013	Study 1: EA in USA: $\mathrm{n}=32$ Americans in USA: $\mathrm{n}=32$ Study 2: EA in USA: $n=32$ Americans in USA: $\mathrm{n}=32$	Study 1: EA in USA: $38 \% \mathrm{M}$, 21.2yrs Americans in USA: 19\%, 20.0yrs Study 2: EA in USA: 20.0yrs Americans in USA: 18.8 yrs No gender info.	University students

Supplementary Material

Evans et al. 2009	$\begin{aligned} & \text { Chinese in USA: } \\ & \mathrm{n}=22 \\ & \text { Americans in USA: } \\ & \mathrm{n}=22 \end{aligned}$	Chinese in USA: 26.9yrs Americans in USA: 25.6yrs No gender info.	University students
Chua et al. 2006	Study 1: Younger Chinese in PRC: $\mathrm{n}=28$ Younger Americans in USA: $\mathrm{n}=29$ Older Chinese in PRC: $\mathrm{n}=28$. Older Americans in USA: $\mathrm{n}=27$ Study 2: Younger Chinese in PRC: $\mathrm{n}=26$ Younger Americans in USA: $\mathrm{n}=26$ Older Chinese in PRC: $\mathrm{n}=28$ Older Americans in USA: $\mathrm{n}=26$	Study 1: Younger Chinese in PRC: $50 \% \mathrm{M}, 19.1 \mathrm{yrs}$ Younger Americans in USA: $52 \% \mathrm{M}, 20.0 \mathrm{yrs}$ Older Chinese in PRC: $46 \% \mathrm{M}, 65.3 \mathrm{yrs}$ Older Americans in USA: $48 \% \mathrm{M}, 70.4 \mathrm{yrs}$ Study 2: Younger Chinese in PRC: 19.3 yrs Younger Americans in USA: 18.8yrs Older Chinese in PRC: 64.3 yrs Older Americans in USA: 67.0 yrs No gender info	Study 1\& study 2: Younger participants: university students Older participants: national population
Gutchess et al. 2006	Chinese in USA: $\mathrm{n}=11$ Americans in USA: $\mathrm{n}=11$	Chinese in USA: $54 \% \mathrm{M}$, Americans in USA: $45 \% \mathrm{M}$ All: 18.0-29.0yrs.	No info.
Chua et al. 2005	$\begin{aligned} & \text { Chinese in USA: } \\ & \mathrm{n}=27 \\ & \text { Americans in USA: } \\ & \mathrm{n}=25 \end{aligned}$	Chinese in USA: $52 \% \mathrm{M}$, 25.4yrs Americans in USA: $40 \% \mathrm{M}, 24.3 \mathrm{yrs}$	University students
Masuda \& Nisbett, 2001	Study 1: Japan: $\mathrm{n}=41$ USA: $\mathrm{n}=36$ Study 2: Japan: $\mathrm{n}=44$ USA: $\mathrm{n}=41$	No info.	University students
Navon figures			
Caparos et al. 2012	Study 2: Japan: $\mathrm{n}=63,51 \% \mathrm{M}$, age mean 20yrs. UK: $\mathrm{n}=62,44 \% \mathrm{M}$, age mean 24 yrs .	Study 2: Japan: 51\%M, 20.0yrs. UK: $44 \% \mathrm{M}, 24.0 \mathrm{yrs}$.	University students
McKone et al. 2010	Study 1: EA in Australia: $\mathrm{n}=25$ Australians in Australia: $\mathrm{n}=22$	Study 1: EA in Australia: $40 \% \mathrm{M}$ Australians in Australia: $41 \% \mathrm{M}$ No age info.	University students

Convergent evidence:			
Child Development			
Oishi et al. 2014	Study 3: Japan: $\mathrm{n}=59$ USA: $\mathrm{n}=74$	Study 3: Japan: $46 \% \mathrm{M}, 5.2 \mathrm{yrs}$ USA: $55 \% \mathrm{M}, 4.9 \mathrm{yrs}$	Kindergarten children
Imada et al. 2013	Japan: n=86 USA: $\mathrm{n}=89$	Japan: $51 \% \mathrm{M}, 7.0 \mathrm{yrs}$. USA: $52 \% \mathrm{M}, 7.0 \mathrm{yrs}$.	Students
Koh \& Milne, 2012	Singapore: $\mathrm{n}=32$ UK: $\mathrm{n}=26$ All participants: age range 8 to 12 yrs.	Singapore: 100\% UK: 100% All: 8-12 yrs.	Students
Kelly et al. 2011b	$\text { PRC: } \mathrm{n}=42$ UK: n=42	PRC: $54 \% \mathrm{M}$ UK: $48 \% \mathrm{M}$ All: 7-12yrs.	Students
Duffy et al. 2009	Japan: n=62 USA: $\mathrm{n}=42$	Japan: $39 \% \mathrm{M}$ USA: $48 \% \mathrm{M}$ All: 4-13yrs	Students
Eye Tracking			
Or et al. 2015	Studyl, 2 \& 5: EA in USA: $\mathrm{n}=16$ Caucasian in USA: $\mathrm{n}=16$ Study 3: EA in USA: $n=6$ Western Caucasian in USA: $\mathrm{n}=8$ Study 4: EA in USA: $\mathrm{n}=14$ Caucasian in USA: $\mathrm{n}=14$	Study1, 2 \& 5: EA in USA: $50 \% \mathrm{M}$ Caucasian in USA: $50 \% \mathrm{M}$ All: 18-27 yrs Study 3: No info. Study 4: No info.	No info.
Miellet et al. 2013	$\begin{aligned} & \text { PRC: } \mathrm{n}=15 \\ & \text { UK: } \mathrm{n}=15 \\ & \hline \end{aligned}$	PRC: $40 \% \mathrm{M}, 22.5 \mathrm{yrs}$ UK: $27 \% \mathrm{M}, 24.3 \mathrm{yrs}$	University students
Kelly et al. 2011a	EA in UK: $\mathrm{n}=13$ (Chinese: $\mathrm{n}=12$; Japanese: $\mathrm{n}=1$) Western Caucasian in UK: $\mathrm{n}=13$	EA in UK: $38 \% \mathrm{M}, 23.2 \mathrm{yrs}$ Caucasian in UK: $46 \% \mathrm{M}$, 24.4yrs	University students
Kelly et al. 2011b	$\begin{aligned} & \text { PRC: } \mathrm{n}=42 \\ & \text { UK: } \mathrm{n}=42 \end{aligned}$	PRC: $54 \% \mathrm{M}$ UK: $48 \% \mathrm{M}$ All: 7-12yrs	Students
Caldara et al. 2010	PRC: $\mathrm{n}=30$ UK: $\mathrm{n}=30$	PRC: $37 \% \mathrm{M}, 23.9 \mathrm{yrs}$ UK: $37 \% \mathrm{M}, 25.2 \mathrm{yrs}$	University students
Kelly et al. 2010	Study 2: British born Chinese in UK: $\mathrm{n}=9$ EA in $\mathrm{UK}^{25}: \mathrm{n}=13$	Study 2: British born Chinese in UK: $33 \% \mathrm{M}, 24.4 \mathrm{yrs}$. EA in UK: $38 \% \mathrm{M}, 23.2 \mathrm{yrs}$	British born Chinese in UK: no info.

[^8]| | Caucasian in UK: $\mathrm{n}=13$ | Caucasian in UK: 46\%M, 24.4yrs | EA in UK \& Caucasian in UK: university students |
| :---: | :---: | :---: | :---: |
| Miellet et
 al. 2010 | $\begin{aligned} & \text { PRC: } n=15 \\ & \text { UK: } n=15 \end{aligned}$ | PRC: $53 \% \mathrm{M}, 24.7 \mathrm{yrs}$
 UK: $40 \% \mathrm{M}, 26.1 \mathrm{yrs}$ | University students |
| Rodger et
 al. 2010 | EA in UK: $\mathrm{n}=14$ Caucasian in UK: $\mathrm{n}=14$ | EA in UK: 43\%M, 24.0yrs Caucasian in UK: $43 \% \mathrm{M}$, 23.0yrs | University students |
| Evans et
 al. 2009 | Chinese in USA: $\mathrm{n}=22$
 Americans in USA: $\mathrm{n}=22$ | Chinese in USA: 26.9 yrs Americans in USA: 25.6 yrs No gender info. | University students |
| Goh et al. 2009 | $\text { Singapore: } \mathrm{n}=15$ $\text { USA: } \mathrm{n}=16 \text {, }$ | Singapore: $60 \% \mathrm{M}, 22.1 \mathrm{yrs}$ USA: $44 \% \mathrm{M}, 21.4 \mathrm{yrs}$ | University students |
| Jack et al. 2009 | EA in UK: $\mathrm{n}=13$ Caucasian in UK: $\mathrm{n}=13$ | EA in UK: $38 \% \mathrm{M}, 23.2 \mathrm{yrs}$ Caucasian in UK: 46% M, 24.4yrs | University students |
| Rayner et
 al. 2009 | Chinese in USA: $\mathrm{n}=12$
 Americans in USA: $\mathrm{n}=12$ | No info. | University students |
| $\begin{aligned} & \text { Blais et al. } \\ & 2008 \end{aligned}$ | EA in UK: $\mathrm{n}=14$
 British in UK: $\mathrm{n}=14$ | EA in UK: $50 \% \mathrm{M}, 23.2 \mathrm{yrs}$ British in UK: 43\%M, 24.4yrs | University students |
| Rayner et
 al. 2007 | Native Chinese speaker in USA: $\mathrm{n}=23$
 Bilingual group in USA: $\mathrm{n}=27$
 Americans in USA: $\mathrm{n}=24$ | No info. | University students |
| Chua et
 al. 2005 | Chinese in USA: $\mathrm{n}=27$
 Americans in USA: $\mathrm{n}=25$ | Chinese in USA: 52% M, 25.4 yrs
 Americans in USA:
 $40 \% \mathrm{M}, 24.3 \mathrm{yrs}$ | University students |
| Neural studies | | | |
| Hedden et
 al. 2008 | EA in USA: $\mathrm{n}=10$ European Americans in USA: $\mathrm{n}=10$ | All participants: $45 \% \mathrm{M}$, 18-26yrs | No info. |
| $\begin{aligned} & \text { Goh et al., } \\ & 2007 \end{aligned}$ | Singapore:
 Younger adult: $\mathrm{n}=20$
 Older adult: $\mathrm{n}=17$
 USA:
 Younger adult: $\mathrm{n}=19$
 Older adult: $\mathrm{n}=19$ | Singapore:
 Younger adult: $35 \% \mathrm{M}$, 21.3yrs
 Older adult: $35 \% \mathrm{M}$, 66.7 yrs USA: | No info. |

		Younger adult: $63 \% \mathrm{M}$, 21.7 yrs Older adult: $26 \% \mathrm{M}$, 68.1 yrs	
Gutchess et al., 2006	Chinese in USA: $\mathrm{n}=11$ Americans in USA: $\mathrm{n}=11$	Chinese in USA: $54 \% \mathrm{M}$, Americans in USA: $45 \% \mathrm{M}$ All: 18.0-29.0yrs	No info.

2.6 Supplementary Table S6 Cross-cultural psychology: Contention 2, Interconnectedness, adjustment and harmony

Authors , year	Participants	Gender \& mean age	Subjects occupation
Adult behavioural studies			
Preferences for harmony or uniqueness			
Kinias et al. 2014	Study 1: South Kor.: n=83 USA: $\mathrm{n}=79$ Study 2: South Kor.: n=46 USA: $\mathrm{n}=49$ Study 3: South Kor.: n=97 USA: $\mathrm{n}=83$ Study 4: South Kor.: n=48 USA: $\mathrm{n}=86$	Study 1: South Kor.: 63\%M, 23.0yrs USA: $32 \% \mathrm{M}, 20.2 \mathrm{yrs}$ Study 2: South Kor.: $0 \% \mathrm{M}$, 21.5yrs USA: $0 \% \mathrm{M}, 18.9 \mathrm{yrs}$ Study 3: South Kor.: 48\%M, 23.5yrs USA: $33 \% \mathrm{M}, 21.0 \mathrm{yrs}$ Study 4: South Kor.: 42\%M, 22.2yrs USA: $26 \% \mathrm{M}, 21.4 \mathrm{yrs}$	Study 1,study 3 \& study 4: University students Study 2: No info.
Ishii et al. 2014	Study 1: Japan: $\mathrm{n}=70$ USA: $\mathrm{n}=48$ Study 2a: Japan: $\mathrm{n}=28$ USA: $\mathrm{n}=30$ Study 2b: Japanese in Japan: $\mathrm{n}=37$ Asians in USA: $\mathrm{n}=22$ European Americans in USA: $\mathrm{n}=36$ Study 2c:	Study 1: No info. Study 2a: Japan: 32\%M USA: $23 \% \mathrm{M}$ No age info. Study 2b: Japanese in Japan: 54\%M Asians in USA: $22 \% \mathrm{M}$ European Americans in USA: $37 \% \mathrm{M}$ No age info. Study 2c:	Study 1: University students Study 2a: University students Study 2b: University students Study 2c: University students Study 3a: Kindergarten Children Study 3b: Child rearers

	Asian Canadians in Canada: $\mathrm{n}=74$ Study 3a: Japan: n=34 Canada: $\mathrm{n}=18$ Study 3b: Japan: n=103 Canada: $\mathrm{n}=56$	Asian Canadians in Canada: 27% M No age info. Study 3a: Japan: $56 \% \mathrm{M}, 5.2 \mathrm{yrs}$ Canada: $39 \% \mathrm{M}, 5.0 \mathrm{yrs}$ Study 3b: Japan: 39\%M, 41.3yrs Canada: $30 \% \mathrm{M}, 34.3 \mathrm{yrs}$	
Yamagis hi et al. 2008a	Study 1: Japan: $\mathrm{n}=55$, 49\%M USA: $\mathrm{n}=50,28 \% \mathrm{M}$ No age info. Univ. students. Study 2: Japan: n=654, $56 \% \mathrm{M}$ No age info. Univ. students.	Study 1: Japan: 49\%M USA: $28 \% \mathrm{M}$ No age info. Study 2: Japan: 56\%M No age info.	Study 1 \& study 2: University students
Kim \& Drolet 2003	Study 1: Koreans in USA: $\mathrm{n}=206$ Americans in USA: $\mathrm{n}=137$	Study 1: All: 48\%M No age info.	University students
Kim \& Markus 1999	Study 1: Chinese American in USA: $\mathrm{n}=31$ European Americans in USA: $\mathrm{n}=52$ Study 2: South Kor.: $\mathrm{n}=38$ USA: $\mathrm{n}=38$ Study 3: EA in USA: $\mathrm{n}=29$ Americans in USA: $\mathrm{n}=27$	Study 1: Chinese American in USA: $35 \% \mathrm{M}, 16.2 \mathrm{yrs}$ European Americans in USA: $31 \% \mathrm{M}, 16.8 \mathrm{yrs}$ Study 2: South Kor.: 37% M, 21.2yrs. USA: 44\%M, 19.1yrs Study 3: EA in USA: $59 \% \mathrm{M}$, 30.3yrs Americans in USA: $56 \% \mathrm{M}, 34.7 \mathrm{yrs}$	Study 1: High school students. Study 2: University students Study 3: No info.
Preferences on interconnected or independent types			
Hashimo to \& Yamagis hi 2015	Japan: $\mathrm{n}=195$ USA: $\mathrm{n}=64$	Japan: $56 \% \mathrm{M}, 20.2 \mathrm{yrs}$ USA: 34\%M, 20.2yrs	University students
Interconnected versus independent cognitive dissonance			
Imada \& Kitayam a 2010	Study 1: Japan: $\mathrm{n}=60$ USA: $n=34$	Study 1: Japan: $58 \% \mathrm{M}, 18.9 \mathrm{yrs}$ USA: $47 \% \mathrm{M}, 20.1 \mathrm{yrs}$	Study 1 \& study 2: University students

	Study 2: Asian Americans in USA: n=45 Caucasian Americans in USA: n=62	Study 2: Asian Americans in USA: 24\%M, 19.7yrs Caucasian Americans in	
	USA: 37\%M, 19.4yrs		

Supplementary Material

	European American: $\mathrm{n}=65$		
Morling et al. 2002	Study 1 a. Japan: $\mathrm{n}=83$ USA: $\mathrm{n}=84$ Study 1b: Japan: $\mathrm{n}=31$ USA: $\mathrm{n}=31$ Study 2: Japan: n=96 USA: $\mathrm{n}=102$	Study 1 a. Japan: 52% M USA: 49% M No age info. Study lb: Japan: $58 \% \mathrm{M}$ USA: $42 \% \mathrm{M}$ No age info. Study 2: Japan: $50 \% \mathrm{M}$ USA: 49% M No age info.	Study la, study $1 b$, \& study 2: University students
Dispositional/correspondence bias			
$\begin{aligned} & \text { Fausey } \\ & \text { et al. } \\ & 2010 \end{aligned}$	Study 1: Japan: $\mathrm{n}=22$ English speakers: $\mathrm{n}=58$ Study 2: Japan: $\mathrm{n}=70$ USA: $\mathrm{n}=62$	Study 1: Japan: 23.6yrs English speakers: 33.4yrs No gender info. Study 2: Japan: 20.9yrs. USA: 19.3yrs No gender info.	Study 1: No info Study 2: University students
Kitayam a et al. 2009	Japan: $\mathrm{n}=122$ USA: $\mathrm{n}=94$ UK: $\mathrm{n}=95$ Germany: n=125	Japan: $55 \% \mathrm{M}, 20.9 \mathrm{yrs}$ USA: $34 \% \mathrm{M}, 18.7 \mathrm{yrs}$ UK: $13 \% \mathrm{M}, 20.5 \mathrm{yrs}$ Germany: 31\%M, 26.8 yrs	University students
Zou et al. 2009	Study 2: Hong Kong: $\mathrm{n}=64$ USA: $\mathrm{n}=65$ Study 3: Chinese ${ }^{26}$: $\mathrm{n}=85$ European Americans: n=120 Study 4: Hong Kong: $\mathrm{n}=121$	Study 2: Hong Kong: 35\%M USA: 56\%M No age info. Study 3: Chinese: $29 \% \mathrm{M}$ European Americans: $45 \% \mathrm{M}$ No age info. Study 4: Hong Kong: $34 \% \mathrm{M}$ No age info.	Study 2, study 3, \& study 4: University students
Masuda Kitayam a 2004	Study 1: Japan: $\mathrm{n}=77$ USA: $\mathrm{n}=82$ Study 2: Japan: $\mathrm{n}=92$	Study 1: Japan: 63% M USA: $45 \% \mathrm{M}$ No age info. Study 2:	Study 1 \& study 2: University students

[^9]| | USA: $\mathrm{n}=60$ | $\begin{aligned} & \text { Japan: } 59 \% \mathrm{M} \\ & \text { USA: } 50 \% \mathrm{M} \\ & \text { No age info. } \\ & \hline \end{aligned}$ | |
| :---: | :---: | :---: | :---: |
| Choi et
 al. 2003 | Study 1:
 Asian American in USA: $\mathrm{n}=51$
 Koreans in South
 Kor.: $\mathrm{n}=51$
 European
 American in USA: $\mathrm{n}=51$
 Study 2:
 Asian American in USA: $\mathrm{n}=35$
 Koreans in South
 Kor.: $\mathrm{n}=54$
 Americans in USA: $\mathrm{n}=47$
 Study 3:
 South Kor.: $\mathrm{n}=87$
 USA: $\mathrm{n}=82$
 Study 4:
 South Kor.: n=95
 USA: $\mathrm{n}=109$ | Study 1:
 No info.
 Study 2:
 No info.
 Study 3:
 No info.
 Study 4:
 No info. | Study1, study 2, study 3, \& study 4: University students |
| Miyamot

 Kitayam
 a 2002 | Study 1:
 Japanese in Japan: $\mathrm{n}=49$
 Americans in
 Japan: $\mathrm{n}=58$
 Study 2:
 Japanese in Japan: $\mathrm{n}=60$
 Americans in Japan: $\mathrm{n}=50$ | Study 1:
 Japanese in Japan:
 51\%M
 Americans in Japan:
 $50 \% \mathrm{M}$
 No age info.
 Study 2:
 Japanese in Japan:
 33\%M
 Americans in Japan:
 $40 \% \mathrm{M}$
 No age info. | Study 1 \& study 2: University students |
| Norenza yan et al. 2002 | Study 1:
 South Kor.: n=100
 USA: $\mathrm{n}=97$
 Study 2:
 Koreans in USA: $\mathrm{n}=32$
 Americans in USA: $\mathrm{n}=26$
 Study 3:
 South Kor:: n=120
 USA: $\mathrm{n}=121$ | Study 1:
 South Kor.: $51 \% \mathrm{M}$, 20.7yrs
 USA: 35% M, 19.0 yrs
 Study 2:
 Koreans in USA: $53 \% \mathrm{M}$, 22.0yrs
 Americans in USA:
 $42 \% \mathrm{M}, 21.0 \mathrm{yrs}$
 Study 3:
 No info. | Study 1, study 2 \& study 3: University students |
| Krull et
 al. 1999 | $\begin{aligned} & \text { Study 1: } \\ & \text { PRC: } \mathrm{n}=60 \\ & \hline \end{aligned}$ | Study 1:
 PRC: 53\%M, 19.3yrs | Study 1 \& study 2: University students |

	USA: $\mathrm{n}=36$ Study 2 : Hong Kong: $\mathrm{n}=38$ USA: $\mathrm{n}=38$	USA: 42\%M, 19.8yrs Study 2: Hong Kong: 21.3yrs USA: 20.5yrs No gender info.	
Choi \& Nisbett 1998	Study 1: South Kor.: n=159 USA: $\mathrm{n}=202$ Study 2: South Kor.: n=78 USA: $\mathrm{n}=94$	Study 1: South Kor.: 86\%M USA: $50 \% \mathrm{M}$ No age info. Study 2: South Kor.: 49\%M USA: $70 \% \mathrm{M}$ No age info.	Study 1 \& study 2: University students
Hallahan et al. 1997	No participants Only articles from Hong Kong/USA newspaper.		
Lee et al. 1996	No participants Only articles from Hong Kong/USA newspaper.		
Morris \& Peng 1994	Study 1: Younger Chinese: $\mathrm{n}=100$ Younger Americans: $\mathrm{n}=95$ Older Chinese: $\mathrm{n}=28$ Older Americans: $\mathrm{n}=29$ Study 3: Lu questionnaire: Chinese in USA: $\mathrm{n}=11$ Americans in USA: $\mathrm{n}=14$ Mcllvance questionnaire: Chinese in USA: $\mathrm{n}=11$ Americans in USA: $\mathrm{n}=19$.	Study 1 \& study 3: no info.	Study 1: Younger participants: Secondary school students Older participants: university students Study 3: university students
Kashima et al. 1992	Study 2: Japan: $\mathrm{n}=133$ Australia: $\mathrm{n}=142$	No info.	University students
Engaging and disengaging emotions			
Kitayam a et al. 2009	Japan: $\mathrm{n}=122$ USA: $\mathrm{n}=94$ UK: $\mathrm{n}=95$ Germany: n=125	Japan: $55 \% \mathrm{M}, 20.9 \mathrm{yrs}$ USA: $34 \% \mathrm{M}, 18.7 \mathrm{yrs}$ UK: $13 \% \mathrm{M}, 20.5 \mathrm{yrs}$ Germany: $31 \% \mathrm{M}$, 26.8 yrs	University students

Kitayam a et al. 2006	Study 1: Japan: $\mathrm{n}=35$ USA: $\mathrm{n}=47$ Study 2: Japan: $\mathrm{n}=55$ USA: $\mathrm{n}=46$	Study 1: Japan: 49\%M USA: 57\%M No age info. Study 2: Japan: $36 \% \mathrm{M}$ USA: $50 \% \mathrm{M}$ No age info.	Study 1 \& study 2: University students
Self-inflation			
Kitayam a et al. 2009	Japan: $\mathrm{n}=122$ USA: $\mathrm{n}=94$ UK: $\mathrm{n}=95$ Germany: n=125	Japan: 55\%M, 20.9yrs USA: $34 \% \mathrm{M}$, 18.7 yrs UK: $13 \% \mathrm{M}, 20.5 \mathrm{yrs}$ Germany: 31\%M, 26.8yrs	University students
Happiness as personal or social harmony-related			
Kitayam a et al. 2009	Japan: $\mathrm{n}=122$ USA: $\mathrm{n}=94$ UK: $\mathrm{n}=95$ Germany: n=125	Japan: $55 \% \mathrm{M}, 20.9 \mathrm{yrs}$ USA: $34 \% \mathrm{M}$, 18.7 yrs UK: $13 \% \mathrm{M}, 20.5 \mathrm{yrs}$ Germany: $31 \% \mathrm{M}$, 26.8 yrs	University students
Twenty statement test: Numerous studies, which broadly show effects but disputes on self-report and interpretation (reviewed in e.g.(Berry, Poortinga, Breugelmans, Chasiotis, \& Sam, 2011))			
Self-enhancement, self-esteem (Heine, Lehman, Markus, \& Kitayama, 1999), selfserving biases (Norasakkunkit \& Kalick, 2002): Numerous studies, but consistent effects debated (reviewed in e.g.(Berry et al., 2011)).			
Self-esteem \& self-serving bias			
Norasak kunkit \& Kalick 2002	EA in USA: $\mathrm{n}=96$ SA in USA: $\mathrm{N}=54$ European Americans in USA: $\mathrm{N}=135$	EA \& SA in USA: 33\%M, 23.3yrs European Americans in USA: $36 \% \mathrm{M}, 22.9 \mathrm{yrs}$	University students
Additional evidence			
Neural studies			
Korn et al. 2014	Chinese in PRC: $\mathrm{n}=25$ Chinese in Germany: $\mathrm{n}=28$ Germans in PRC: $\mathrm{n}=24$ Germans in Germany: $\mathrm{n}=27$	Chinese in PRC: $40 \% \mathrm{M}$, 22.7 yrs Chinese in Germany: $50 \% \mathrm{M}, 25.9 \mathrm{yrs}$ Germans in PRC: $58 \% \mathrm{M}$, 24.3yrs Germans in Germany: $48 \% \mathrm{M}, 24.3 \mathrm{yrs}$	No info.
Kang et al. 2013	Koreans in South Kor.: n=11 Americans in South Kor: $\mathrm{n}=11$	Koreans in South Kor.: $0 \% \mathrm{M}, 44.0 \mathrm{yrs}$ Americans in South Kor: $0 \% \mathrm{M}, 41.2 \mathrm{yrs}$	No info.
Mu et al. 2015	$\begin{aligned} & \text { PRC: } \mathrm{n}=25 \\ & \text { USA: } \mathrm{n}=25 \end{aligned}$	No info.	No info.

3 Reference

Note that all other references are in the main text.

Brick, K., \& Visser, M. (2015). What is fair? An experimental guide to climate negotiations. European Economic Review, 74, 79-95.
https://doi.org/10.1016/j.euroecorev.2014.11.010

Cheo, R. (2013). Risky choices in a risk-taking experiment: are singaporeans different from the rest of the world? The Singapore Economic Review, 58(3), 1350015. https://doi.org/10.1142/S021759081350015X

Costa-Gomes, M., \& Zauner, K. G. (2001). Ultimatum Bargaining Behavior in Israel, Japan, Slovenia, and the United States: A Social Utility Analysis. Games and Economic Behavior, (34), 238-269. https://doi.org/doi:10.1006/game.2000.0805

Croson, R., \& Buchan, N. (1999). Gender and culture: International experimental evidence from trust games. The American Economic Review, 89(2), 386-391.

Du, W., Green, L., \& Myerson, J. (2002). Cross-Cultural Comparisons of Discounting Delayed and Probabilistic Rewards. Psychological Record, 52(4), 479-492.

Goerg, S. J., \& Walkowitz, G. (2010). On the prevalence of framing effects across subject-pools in a two-person cooperation game. Journal of Economic Psychology, 31(6), 849-859. https://doi.org/10.1016/j.joep.2010.06.001

Jung, Y., Hall, J., Hong, R., Goh, T., Ong, N., \& Tan, N. (2014). Payback: Effects of relationship and cultural norms on reciprocity: Payback. Asian Journal of Social Psychology, 17(3), 160-172. https://doi.org/10.1111/ajsp. 12057

Watabe, M., Terai, S., Hayashi, N., \& Yamagishi, T. (1996). Cooperation in the OneShot Prisoner's Dilemma Based on Expectations of Reciprocity. The Japanese Journal of Experimental Social Psychology, 36(2), 183-196.

[^0]: ${ }^{1}$ (Cheo, 2013) was not included as it was unclear what positive and negative findings were reported with respect to East Asian versus Western comparisons of financial choice.

[^1]: ${ }^{4}$ (Hsee \& Weber, 1999) is included elsewhere but not in this section as it was unclear if nationality interacted with losses and gains domains.

[^2]: ${ }^{5}$ Study 4 also noted the emotional impact of two scenarios, which we do not report.

[^3]: ${ }^{9}$ Study conducted in Canada, the foreign students were from Hong Kong, Singapore, Malaysia and Indonesia. All of the foreign students were ethnically Chinese.

[^4]: ${ }^{10}$ In the paper, Malaysian Chinese means only Malaysians of Chinese ethnic background were recruited.
 ${ }^{11}$ Published as working paper

[^5]: ${ }^{15}$ Discussion paper
 ${ }^{16}$ (Croson \& Buchan, 1999) used the same data set focusing on gender differences.
 ${ }^{17}$ Gender information from (Croson \& Buchan, 1999)

[^6]: ${ }^{20}$ Japanese data were from Watabe, Terai, Hayashi and Yamagishi (1996).
 ${ }^{21}$ (Valenzuela et al., 2005) told participants they would be paid according to the choices in the experiment, actually they used deceit and fully debriefed them afterwards.

[^7]: ${ }^{22}$ (Jung et al., 2014) was not included, as it did not report the ethnic of Singaporeans.
 ${ }^{23}$ Participants actually played the game, and data reported in (Buchan et al., 2006)-real money/ direct comparison
 ${ }^{24}$ Gender information was from (Croson \& Buchan, 1999)

[^8]: ${ }^{25}$ Information for EA in UK and Caucasian in UK were from Jack et al. (2009).

[^9]: ${ }^{26}$ No location info.

